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NUMIERICAL SOLUTION OF FLOOD PREDICTION AUD

RIVER R]"GULATION PRODLEIvS

E. Tsaacson, J. J. Stoker, A. Troesch

*11. Numerical Solution of Flood Problems in Simplified

Models of the Ohio River and the Junction of the

nhio and Mississlppi Rivers. Conclusions Valuable

for, the Actual Cases.

1. Purpcse of the present report and summary of its results.

In Report i a mathematical basis was laid for the

iirxierical solution of flow problems in rivers. The ultimate

aim is to carry out numerically the solution of a flood problem

for the Ohio River in a concrete case by using an appropriate

digital comouter, to compare the results with the observations,

and, in general, to study the feasibility of such methods of

attacking this type of problem; in addition, the problem of

floods at the junction of the Ohio and the Mississippi, and

problems concerning the regulation of the Tennessee River

through controls at the Kentucky Dam are to be solved

numerically, In all of these cases it is necessary to make

use of a considerable bulk of observational data--cross-

sections and slopes of the channels, measurements of river

depths and discharges as functions of time and distance down

the river, drainage areas, observed flows from tributaries,

etc.-- n order to obtain the information necessary to fix the

coefficients of the differential equations derived in Report I

and to fix the initial and boundary, conditions. This in itself

is a task with somne complexities, and it also takes time and
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the cooperation of several qroups of people. In the meantimeo,

therefore, it was thought wise to try *.ut the numerical methods

proposed irn Report I on three problems which are simplified

versions of actual problems, and to carry out the solutions

by using or',' a.:y hand calculators. The present Report II

has as its pitzpose the presentation of the solutions in these

special cases, together with an analysis of their bearing on

the concrete problems for actual rivers.

The models chosen correspond in a rough general way

(a) to two types of flow for the Ohio and (b) to the Ohio and

M!ississippi at their Junction. Rivers of constant slope, with

rectangular cross-sections having a uniform breadth and

roughness coefficient are assumed. In this way differential

equations with constant coefficients result. The values of

these quantities are, however, taken to correspond in order of

magnitude with those for the actual rivers. In the model of

the Ohio, for example, the slope of the channel was assumed

to be 0.5 ft./mile, the quantity n (the roughness coefficient in

Manning's formula) was given the value 0.03, and the breadth

of the river was taken as 1000 feet. (These values were

recommended to us by the engineers on the basis of their

knowledge of the Ohio.) It was assumed that a steady uniform

flow with a depth of 20 ft. existed at the initial instant

t = 0, and that for t > 0 the depth of the water was increased

at the point x = 0 irom 20 ft. to 40 ft. within 4 hours and

then held fixed at the latter value. The problem was to

determine the flow downstream, i.e. the depth y and flow

velocity v as functions of x (for x> 0) and t. The resulting

S • " _.. . .. • . m • m mm • u• um~mn nnunnuumnmim -m-• n- -
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stage and discharge profiles are given for several times in

Figures 1 and 2. In a similar fashion ,,he model for the

junction of the Ohio and Mississippi was set up. (Figures 4

and 5 display the stage and discharge profiles for various

times.)

Much valuable information and insight was gained from

the study of these models, especially from the model of the

Ohio. This will be discussed in detail later on, but a number

of observations might be made at this point. In the first

place, the fact that the solution of the simplified flood

problem in the Ohio could be carried out numerically by hand

computation over a considerable range of values of the

distance and time (values at 900 net points in the xst-plane

were determined by finite differences) shows that the problems

are well within the capacity of modern calculating equipment.

It mirht be added that the special case chosen for a flood

in the Ohio was one in which the rate of rise at the starting

point upstream was extremely high (5 feet per hour, in

comparison with the rate of rise during the big flood of

1945 which was never larger than 0.7 feet per hour at

Wheeling, West Virginia), so that a rather severe test of

the finite difference method was made, in view of the rapid

changes of the basic quantities in space and time.

The decisive point in estimating the magnitude of the

computational work in using finite differences is the number

of net points needed, and our model indiuates that an interval

Lx not smaller than 10 miles along tha river and an interval



t not less than 0,3 hours in time in a rectangular net in

the x,t-plane will yield results that are si.ficieatly

accurate. (Of course,, the actual problems for the Ohio will

involve empirical coefficients in the differential equations

and other empirical data, which will have to be coded for

calculatinfp machines, but this will have no great effect on

these estimates for x and might under extreme flood condi-,

tions reduce At by a factor of .5.) In our model Calcula-

tions we used a uniform space interval /Ax , along the river's

length, but we are investigating the feasibility of using the

location of the gaging stations as net points. In our model

calculations, we experiment with various finite difference

methods, interval sizes and analytic approximations in order

to get the practical experience necessary to select the

technique to be used for automatic machine computation. Ie

plan to use our ideas in some trial desk calculations made with

the physical data for the Ohio and the 1945 flood (the basic

.1ata bavs been provided by the Corps of Engineers and is now

being reduced at New York University to a form suitable for

computation).

A second computation for the Ohio model was performed

for a steady progressing wave (40 ft. stage upstream and 20 ft.

stage downstream). This work indicated that an interval Ax

of 10 miles yielded a stage prediction accurate to within 0.6

per cent in a 7 hour forecast.

To prov w.ith a check on the accuracy of our
computati ... ethods, In a problem which could be solved
analytically (see sec. 2.4 and i- -Ij.

n n up m m n nmnui i mm• ail anni Nm n iNl~ m m m I Inn -i n- - mill ~ w



As a model for the problem of calculating what happens

at the junction of two major streams, we worked with three

separate river stretches (e.g. the Ohio, the upstream side of

the Mississippi, the downstream side of the Mississippi). F'or

each region the same finite difference scheme was used as in

the model of the Ohio. In addition, it was necessary to

determine the values of stage and discharge at the coimnon

junction point from the knowledge that the levels of the three

branches agree there and that the water which flows into the

junction also flows out.

A much better understanding was gained from the calcula-

tions for the model o' the Ohio of the relation between the

methods used by the engineers in the Ohio r iver Division in

Cincinnati (and other engineers as well) for predicting flood

stages, and the methods explained in Report I, which make use

of the basic differential equations. At first sight the two

methods seem to have very little in common, though both, in

the last analysis, must be based on the laws of conservation

of mass and momentum; indeed, in ore important respect they

even seem to be somewhat contradictory. 7he methods used in

engineering practice (which make nc direct use of any

differential equatiorns) tacitly asauwe that P flood wave in a

long river such as the Ohio rropag&tes only in the downstream

direction, while the basic thecry of the differential eouations

we use (as was explained in Repo-t 1) tells us that a

dieturbarce at any point in a river flowing ct sub-crWtical

bpeod (the normal case in general and alwayn the case f'or the
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Ohio) will propagate as a wave traveling upstream as well as

downstream. Not only that, the speed of propagation relative
to the flowinR stream, as defined by the differential equations,

is /g for small disturbances and this is very much larger

than the propagation speed obtained by the engineers for their

flccd wave traveling downstream. There is, however, no real

discrepancy. The method used by the engineers can be

interpreted as a method which yields solutions of the

differential equations, with certain terms neglected, that are

good approximations (though not under all circumstances, it

seems) to the actual solutions in some cases, among them that

of flood waves in a river such as the Ohio. Mhe neglect of

terms in the differential equations in this approximate theory

is so drastic as to make the theory of characteristics, from

which the properties of the solutions of the differential

ecuations were derived in Report I1 no longer available. The

numerical solution presented here of the differential equations

for a flood wave in a model of tne Ohio yields. as we have

said, a wave the front of which travels downstream at the

speed 4f, but the amplitude of this forerunner is quite esrall,

while the portion of the wave with an amplitude inl the range

of practical Interest ts found by this method to travel with

essentially the same speed as would be detormined by the

engineor's avnroximptte method. 'hat seems to happen is t•o

following: small forerunners or a disturbance travel with the



speed r relative to the flowing stream, but the friction

forces act in such a way as to decrease the speed of the main

portion of the c'isturbance far bclow t--.e values given by /I7,

i.e. to a value correspondirn rToughly to the speed of a steady

pro~ressin wave that travels unchanged in form. (One could

also interpret the engineering method as one based on tV-e

assumption that the waves encountered in practice differ but

little from steady progressing waves.)

This analysis of the relation between the methods

proposed in Report ' and those commonly used in engineering

practice indicates why it may be that the latter methods,

while they furnish good results in the most important cases,

fail to mirror the observed occurrences in other cases. For

example, the Droblem of what happens at a m~jor Ju-ction, and

various problems arising in connection with the operation of

such a dam as the Kentucky Dam in the Tennessee Rivei seem to

be cases in wlicch the enlrlneering methods do not work well.

These are, in all likelihood, cases in which the motions of

intsrist depart too much from those of steady progressing waves,

and cases in whiich the propagation of waves uPstream is as vital

as the propagation downstream. ,'hus at q major Junction it is

As can be seen from "epurt , the prop•gatiLon speed, 1UP
which is determinet. witlout reference to th.e friction term,
would not b4 affected %y any change in the order of magnttu+o
of the friction forqe.

A attady progressing wave hs a flow in which thow depth and
discharge are functions only or (x -Pt), with U a constnnt
velocity. The Propagation s*eed 'T 1s determined from tie
frIction term (see qec.



clear that considerable effects on the uostrea..i >.ide of a main

stream are to be expected when a large flow from a tributary

Soccurs. Tn the same way, a dam in. a stream (or any obstruction,

or change ir: cross-section, etc.) causes reflection of waves

upstream, and neglect of such reflections might well cause

serious errors on some occasions. On the other hand, the

"method of numerical solution based directly on the differential

equations is applicable in any of these cases, and it seems

reasonable, as we propose doing, to test it out as a practical

method.

The above general description o: what happens -When a

flood wave starts down a long stream--in particular, thiat it

has a lengthy front portion whici travels fast, but has a small

ampli-tude, while the main paTrt of the disturbance moves much

more slowly--has an important bearing on the question of the

proper approach to the numerical solution by finite differences.

It is, as we shall see shortly, necessary to calculate--or else

estimate in some way--the motion up to the front of the

disturbance in order to be in a position to calculate it at the

places and times where the disturbances are large enough to be

of practical interest. This means that a large number of net

points in the finite difference mesh in the x,,t-plane le in

regions where the solution is not of great interest. Since the

fixing of the solution in these regions costs as much effort as

for the rewions of qreater interest, the differential equation

method is at a certain disadvantage by comparison with the

conventional method in such a casA. However, it is possible to
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determine analytically the character of the front of the wave

and thus estimate accurately the pieces and times at which the

wave amplitude is so small as to be negligible; these regions

can then be regarded as belonging to the regions of the x,t-

plane vhere the flow is undisturbed, with a corresponding

reduction in the number of net points at which the solutions

must be calculated. A method which can be used for this

purpose has been devised by G. Whitham and A. Troesch, and a

description of it is given in Appendix I of this report. If a

modern highI speed digital computer were to be used, however, it

would not matter very much whether the extra net points in the

front portion of the wave were to ce included or not: many

such machines have ample capacity to carry out the necessary

calculations.

Tn sec. 2 a description of the calculations made for the

model of the Ohio is given, including a discussion of various

difficulties which occurred for the flood wave problem near

the front of the disturbance, and particularly at the beginning

of the wave motion (i.e. near x = 0, t = 0), and an enumeration

of the features of the calculation which are certain to play a

similar role in the more complicated case of the Ohio as it

really is. In sec. 3 we give a description of the method used

and the calculations made for a model of a flood coming down

the Ohio and its effect on passing into the Mississippi. In

Appendix I, as was noted above, the method of G. Whitham and

A. Troesch for dealing with the front portion of a wave traveling

down a river is described. In Appendix II, a discussion of
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steady flows and of steady progressing waves is given. These

flows were used to determine convenient initial conditions, to

test our comnuting procednres and to furnish the asymptotic

behavior (for large time) of the flows.

lurthermore, in order to understand more fully the

general behavior of flood waves in open channels and especially

why the speed Fa is not the observed propagation velocity for

normal flaod problems, some theoretical investigations using

the concepts of steady and steady progressing flow were carried

out by G. Morikawa, A. Troesch, anxd G. Whitharm and will be

reported on later. Their conclusions also have important

bearing on the practicability of making flood forecasts for

extended periods of time, from the given data.

2. Model of the Ohio.

2.1 Formulation of the flood problem. We consider a simple

model which approximates the average characteristics of the

Ohio River. The river was assumed to have a rectangular cross

section 1000 ft. in width. The slope S of the river ½ottom

was taken as .5 ft./mile and Manning's formula was used for the

friction slope Sf,

These are related to, and extend, the work of

Hayashi, T., Mathematical theory of flood waves. Proc. of the
1st. Japan Nat'l. Cong. for Appl. Mech.,1951.

Deymi4, Ph., Propagation d'une intumescence allongee (probleTme
aval). Int. Cong. for Appl. Mechx.,5th, Proceedings,
Sept. 1938, N. Y., W4iley, 1939.
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- v lvi
Sr \!/3

B

(since the hydraulic radius R for a rectangular channel of

width B ani water of depth y is

S B+2y + .:-

B

fThe choice

Y = (_A9)2 = 2'00 Ift)21 3
(see)

where Manning's nt .03, was suggested by the engineers. The

differential equations are taken in the form (see p. 1L,

Report I, eq. (3.6))

2ccx + vt + vvx + E = 0

(2.1)
9ct + 2vcx + cvx = 0

where

F -- gSf , v = velocity, y = depth of water ,

c = J (the propagation speed of small disturbances)

in carrying out the computation it was found convenient to use

the mile as unit of length and the hour as unit of time.

Ttip physical problem considered wac the following: at

time t = 0, steady flow of depth 20 ft. is assumed. At the

"head", x = 0, of the river, we impose a linear increase of

depth which brings the level to 40 ft. in 4 hours. We then
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maintain the level of h0 ft. at x = 0. The initial velocity of

the water corresponding to a uniform flow of depth yo = 20 ft.

is calculated from Sf = S to be

vo =2.38 mph ;

the propagation speed of small disturbances corresponding to

the depth of 20 ft. is

co= J- = 17.3 mph

The problem then is to determine the solution v(x,t), c(x,t)

for all later time, t > 0, along the river, x > 0. Figures 1

and 2 present the result of the computation in the form of stage

and discharge curves plotted as functions of distance along the

river at various times. As stated above, we worked with

the mile as the unit of length, and the hour as the unit of

time. Our stage measurements were then converted into the

customary unit, the foot, and the discharge into cubic feet

per second.

2.2 Computational techniques. In order to indicate how

the solution was calculated it is convenient to refer to a

diagram in the (x,t) plane (also see Figure 3).
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hour -
i VT

V I.

1.25 .i )t= 19.71

iT i IV

1.7 . _ _ _ --- ~ C"

.- /

miles

Diagram 1

Regions in which various computational methods were tried

According to the theory presented in Report I, we know that

for x > (v +co)t = 19.7 t, called rerion 0, the solution is

given by the unchanged initial data, v(x,t).= vo, c(x,t) = c

(since the forerunner of the disturbance travels at the speed

v + 0 = 19.7 mph).

In order to compute the solution by finite difference

methods, we found it necessary to use rather small intervals

near the origin. This is to be expected since the values of

ct were changed discontinuously at t = 0, x = 0. We

experimented with various interval sizes and finite difference

schemes in order to determine the least time consuming way to

calculate the progress of t:ie flood. Our conclusions have

been summarized in the introduction to this report. We shall

now describe the various schemes and the regions in which they

were used (see Diagram 1 and Figure 3).
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Region I, 0 < x < 19.7 t, Q < t < 4-4. Intei-vals Ax = 1 mile

and it .Oh'3 hour were required owing to the su.dden intcrease

of depth at x = 0, t = 0. The finite difference formulae

derived in Rejort-I, eqs. (4.8), (4.9) were used:

V P M- (C M V M L 7VM-+ CL M)

e- (c'-vM (½vM" vP"+cR)"AxEM]

(2.2)
c M+ t cm + .ý _½ VM+0 CL

1 1

+ (cM-vM)(½vM 2.v- cM Fcv)

where P refers to a point Lt lat~er than M, wb.- le L and R are

Ax units to the left and right of M respectively.

i t

L"ýt

'• - x -- • " ... x ....
L M H

Diagram 2

Net points used in rectangular scheme

(We have adopted the convention of using vM to denote the value

of the function v at the point N.)
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fn Region II, 0 < x < 19.7 t, .4 <_ t < .7, with Ax = 1 mile,

At = .024., we experimented with a different finite difference
scheme, called a "staggered" scheme. This method is

appropriate for use when the space intervals are uniform in

size along the length of the rivwr. The scheme is described

in Report I, eq. (l-.14) and elimiriates any reference to values

at the point M.

It __ _ _

i.

.z'A,

tI

Diagram 3

Net points used in "staggered" scheme

Vp = VN.+ _ jt 2 (cL-c )cl_ + (v. -v )v .- A XEM,]

(2.3)

Op = M + [- CR)VIT+(VL-VR)CM

where

1 1 (C+1Mir= 7(vL+ vR) , M fML (L+ CR) EM ~( L.L+ P`Q

We must pay a slight penalty for using this somewhat

simpler formula. That is, we find that in order to calculate

the value of v(O,t), the velocity at the head of the river, we

must introduce some additional consideration. We refer to
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t

P

M R

•"F >1 S

B G H

D.Diagram 4

Net point arrangement used at bounda:-y in "%ta~gereci" scheme

Diagram 4, where we indicate schematically the staggered net

points P, R, F, G and H. It is clear that equations (2.3)

together with the prescribed values of c(O,t) do not produce a

formula for VP in terms of quantities evaluated at the

pr'eceding staggered points R, F, G, H, etc. 'qe can overcome

tnis difficulty by determining values for vB, cB by linear

interpolation frcm the values at the points F aiid G (or if

rapid changes are made in the boundary values, we may use

quadratic interpolation on the values at the three points

F, G, H). That is, we use such determined values of v., cB in

For linear interpolation

V B C WB 21 F G)

For quadratic interpolation

cB = ( 3 CF+ 6cG- OH)/ 8 , v (3vF+ 6 vG -VH)/

we used these formulae to smooth thn data near the boundary
when we changed interval sizes.
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the difference equation (2.2) to determine the value of v,.

We then use (2.2) again to determine vp. The necessity for

using a different formula to calculate at boundary points

would add some dlfficuliy to a scheme for automatic computation.'

Region III, 0 < x < 5 miles-, .7 < t < 1.25 hr, with

L x = Imile, At= .02 4 hr. We used the same formulae as in

Region TI (except for points on the boundary between Regions

III and IV, see below).

Region IV, 5 < x < 19.7 t, .7 :a t _< 1.25, with Ax = 2 miles,

At = .048 hr. The values at the boundary between Regions

III and TV were obtained by linear interpolation from the

neighboring values. Other quantities were computed by the

"staggered" scheme as in Regions !I and .II.

Region V, 0 < x < Vt, 1.25 < t < 10 hrs, Ax = 5 miles,

Lkt = .17 hr. V represents a variable speed which marks the

downstream end of the observable disturbance (V Z- 10). That is,

by using an expansion scheme (see Appendix I) we determined a

Region VI, Vt < x < 19.7 t, about the forerunner of the

disturbance, in which the flow is practically uridisturbed to

the accuracy we were interested in. We therefore used this

expansion to calculate the various quantities in Pegion AVI

and used the staggered scheme to compute the values in

Region V. I-e permi.tted Rogiens V and VI to overlap slightly,

in order that (a) we should avoid having to interpolate for

boundary values and (b) that we might have a check on the

consistency of the two methods of computation.
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2.3 Observationrss. The conclusions reached on the basis

of these calculations of' a flood in the Ohio can be sumaiarized

as follows:

(a) The model flood, with a 5 foot per hour rise, is extreme

even in comparison with the 1945 flood for which the rate

of rise at Wheeling, 1West Virginia was less than .7 foot

per hour. Such a case exaggerates the way in which our

finite difference methods propagate small errors. For

example, we found slight inaccuracies developing at the

head, x = 0, when we increased the A/x interval size.

We could have devised special techniques to smooth this

effect--but we didn't in Qý. that we could better

observe how the errors were propagated.

(b) In spite of the exceptionally high rate of rise, the

inaccuracies created by using our finite difference

methods were damped out rather strongly (in about

8-10 time steps ). It is possible to control these

inaccuracies by using appopriate smoothing techniques

or more simply by using small interval sizes.

(c) The process by which the small errors of the finite

difference rcheme die out may be described as follows:

A large.- value of v produces a larger friction force

which slows down the motion and produces at tho ntut time

a smaller veloctty. !be lower velocity in a similar way

then operates through the resistance to cr-eate a largor

velocity and tho process repeats with a steady decrease

in the amplitude of variation.
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(d) we checked the accuracy of our computation (as a function

of the interval size) by repeating the calc"Xation for

various interval sizes over the same region in space and

time. Such self-checking by changing intervals can be

coded into an automatic procedure for computation.

(e) The "staggered" scheme introduced additional difficulties

for the computation of boundary values (in contrast with

the rectangular schemes). This trouble was emphasized

in the computation at the boundary of Regions TII and IV

(smaller Lx intervals were used in Region III). Our

plan to use the stage gaging stations as net points would

be simpler to code with a rectangular scheme; and would

not require any special treatment at the boundaries.

(f) We have yet to investigate tb'e possibility of using

"timplicit" finite difference methods--which may permit

the use of larger time steps--at the extra cost of using

v.ore complicated procedures to solve the equations at each

time step.

(g) The linearized theory, obtained for a small perturbation

about the uniform flow with 20 ft. depth, did not give

an accurate descrintion of the solutlon of our problem.

We compared the staoe rrofil.3s rredlcted by the Itinear

theory ane those calculated from the non-linear equatI,:rio.

After a neriod of loss tChn 2 hours, there was a deviatLon

of 2 feet. The linear thenry predicted smnaller values

for stage and dlscharge.
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(h) It would be convenient to be able to obtain in advance

a safe estimate for the maximum value of the particle

velocity, in order to select an appropriate safe value

for At, since we must have At X(see Report I,-V+C
-. 26). Our calculations indicate that this may not

be too simple theoretically, for the maximum velocity

at x 0 greatly exceeds its asymptotic value.

v(O, t)
]\mph

;! /

velocity for 4)0 ft.

2 steady flow
I--- -- • t hours

S~4

Diagram 5

Water velocity obtained at "head"' of

river throui.h regulation of stage

But, it may well be possible, on the basis of empirical

observations, to obtain adecuate estimates of the maximum

velocity. As was indicated earlier, we can easily ceeo

tI.e calculation of the proper interval size as a part

of the computation should other means of determinati•,n

be inadeciuate.

-- ure-.-"----.... . . m
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(I1 Je note that the curves of constant stage have slopes

which are closer to 5 mph (the speed with which a steady

Trogressing flow, 40 ft. upstream and 20 ft. downstream,

moves, see next section) than to the over 19 mph speed

of propagation of small disturbances.

4 t hours region of

/," /,undisturbed

1/ , ,. , flow of 20 .

~2 E 201K/ . / •-
, t

... r" h --s1ope 1-, .7 rmph-slope""""19. =V c f;

-Iu lO X miles

fliagram 6

Curves of constant stage--comparison with first
chaiacteristic and steady progressing flow velocity

The recrion of practically undisturbed flow (determined

by expansion about ttie "first" characteristic x = 19.7 t,

see Ap~pendix i) is shon.,n above. In practice, we expect

the local runoff discharges and the non-uniform flow

conditions to el.minate the region of practically

undhrturbed rlow. "'or this reason, in general, we can

not use analytic expansion schnikes to trý, to save

computational labor of this hind.
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2-4 Determination of accuracy o' finite difference method

by comparison with sn exact solution. There is a case in

4 which an exact solution of the differential equations is

known, i.e. the case of a steady progressing wave with two

different depths at great distances upstream and downstream.

This exact solution for the case of a wave of depth 20 ft.

far downstream and 40 ft. ft-r upstream was taken as furnishing

the initial conditions at t = 0 for a wave motion in the

river. With the initial conditions prescribed in this way

the finite difference method was used to determine the motion

7 at later times; of course the calculation, if accurate, should

furnish a wave profile and velocity distribution which is the

same at time t as at the initial instant t = 0 except tiat

all Quantities are displaced downstream a distance Ut, with

U the speeo of the steady progressing wave. In this way an

opportunity arises to compare the approximate solution with

an exact solution. In the present case the phase velocity U

is approximately 5 mph. We considered an interval size of

Lx = 10 miles in a "staggerred" scheme with •t = .34 hr.

After 7 hours, the calculated stage values aujreed to within

.6 per cent with the exact values. The discharge and the

velocity deviated by less than 2.r per cent from the exact

+ value. The fact that stage values cani be predicted more

In Appendix II wo derive the formulae which describe the
steady progressing wave.

x
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accurately than discharge values is a characteristic of the

presently used finite difference methods that was observed

in all calculations.

y feet

2o(

X
*vmph 100 miles

3,7t .

2.4

Diagram 7

Steady progressing flow--stape and velocity profiles

3. 7he junction of the Ohio and the Mississippi

3.1 Formulation of the junction problem. Our model for the

junction of the Ohio and Mississippi Rivers was constructed

to test our finite difference methods with regard to their

applicability In such cases. We believe that the consideration

of the actual problem, as it occurs in nature, would present

no new difficulties in principle (except for the consideration

of overbankc flow). We supposed the upstream Mississippi

section to be Identical with the Ohio Piver--rectangular cross-
section, 1000 ft. wide, slope of .5 ft./mile, Manningt n=.03,

infinite in length. We imagined ths downstream Mississippi

branch to be rectangilar, twice as wide, i.e. 20C0 ft.,
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YNanninr-'s n.03, and o. slightly smaller slope .49 ft./mile.

The latter modification of the slope was made in order to

obtain an initial solution corresponding to a uniform flow of

20 ft. depth in all three branches (such a change is necessary

to overcome the decrease in wetted perimeter which occurs on

going downstream through the junction).

S '\ / w

.pstream / Ohio /

-100 10C CO'

Lownstreamn
Nsis Sisisipp.pi

S\ i

Doiagram 8

"Sclicatic plan o~fJunct ion

'sTe considered the P'roblen or startwiri a flood wave in the

Ohio, in fact, the same flood 1-'e had computed earlier. The

differrence was that we began the Ohiio flood 50 miles upstream

from the junction. After about 2.5 hours the forerunners of'

the Ohio e'isturbance reached the Junction. 'rhcy then

separated into two wavel~ets, one gcitng ur'streem and the other
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downstream on the Mississippi. In addition, at tho s~ame

instant, a reflected wavelet startd backwarCLs up the, Ohio.

Our finite difference calculations were begun in all three

branches from the moment that the junction was reached by

the forerunner of the Ohio flood, ('!Ue saved the labor of

recomputing the motion for the first 2.5 hours in the Ohio,

since the motion was identical with the one previously

calculated.) The flow was followed for 10 hours and the

results are indicated in the stage and discharge plots as

a function of distance (for varioas times) given in Figures

4 and 5.

3.2 Description of the computational Procedures. Let

"v[1 j, C[l], vr2], c[2], v[ 3 1] c[3J represent the velocity v

and propagation speed c for the Ohio, upstream Mississippi,

and downstream Mississippi, respectively. A "staggered"

scheme was used with interval Ax = 5 miles and Lt = .17 hr.

as indicated in Diagram 9. The junction point is denoted by

x = 0, the region of the Ohio and the upstream Mississippi

are represented by x < 0, while the downstream Mississippi

is given on x > 0. The time t = 2.5 hr. corresponds to the

instant that the forerunner of the flood reaches the junction.
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0 P

L M R

J K A F B G H

Ohio [I] Downstream Mlississippi [3]
Upstream Mississippi r2] junction

x

Diagram 9

Junction net point scheme

The values of' the auaritiles v and c at the junction

were determined as follows: Let us assume that the values

of v and c halre been obtained at all net points for times

Dreceding that of the boundary net point P. We know that at

the JunctIon

cr[] = cr2] = c.3,

(since c = nd the three branches ore level at the

junction) and

Y[•,,v~l] yf21V[21 'Y,,3, v,,
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(since what flows into the junction from the upstream

Mississippi and the Ohio must flow out of the Junction into

the downstream M4ississippi). If the values of v and c were

known at M in the respective branches of the rivers, we could

find the values at P from the following three equations:

Report I, eq. (4.6) for the Ohio and upstream Mississippi,

and Report I, eq. (t4.7) for the downstream Mississippi. We

rewrite all of the equations for convenience

cp[l] =P[2] = cP[3] (with c =

P[1] +Vp2] = 2v P 13 (since YrI] = Y2] = Y[31 )

Crill -CMl] C[lL
(3.1 2 + M l +V [ ) (' n

+ /VPrlvvM[lI + (c +v) ( [ll + j G)
A A

v- % +(2 V2 L -V

M-( 21 V ( )(M[21 12 1 - "c F[21

+t(ci[] A v2]) xE

and

(,.2,,) t- (V3)- •13,1 ¢ 3 ]-

'VP O. '' V M W ] 3 1 + jP[i) -3 V Mr 3 - + 0

L~t +x =O
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The above system of' stx ec.uations determines uniquely the

values Vr.l], Cl!, V[ 2 1 , cf2], v[3], Cr. 31  t P in terns of

the4r values at the preceding Tr:otntq L, T and P Ihe equation-

can be solved explicitly. On the other hand, the values at F,

are determined in the same way from the preceding values at

A, F and B. The values at A and B are determined by linear

interpolation between the naihboring pcoits (K,F) and (?,G)

respectively (see r.1iagram 9).

3.3 Observations.

(a) 14e find that the flow tcrnd3 to a steady state in which

the downstream :'ississippi has uniform flow, as indicated

below (see Appendix TI).

y feet

Ohio

Downstream Mississiopi
UTstream -
Mississippi

20

ril

-Junt-n. In

- I ti L- Lan I•

-uadrattc internoltion using (P,G,H) and (JI',i, was sIrc
af'ter thee taie Inzroasecl anproclably at the Junction.
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(b) The existence of both an up-and downstream branch of the

river into which the Ohio discharges has the effect of

lowerinp the Ohio River level. A crude estimate of what

would happen should the Ohio discharge only into the

downstream branch of the Mississippi, indicates a rise

of about 5 per cent in the level of the Ohio at the

junction.

(c) There is a definite influence on the upstream branch of

the Mississippi (see Pigures 4 and 5) and it is in this

connection that the finite difference methods display

their advantage over the standard flood routing

procedures. For example, at a point 50 miles upstream in

the Mississiopi the stage is increased by 1 ft. as a

result of the pouring of the Ohio River flood into the

*junction.

(d) WTe found it convenient to compute the flow in the

neighborhood of the flood forerunners in the two branches

of the 7iississippi by means of the expansion scheme

mentioned earlier and described in detail in Appendix T.

(e) The damping of small errors and other features peculiar

to these equations are the same in tiie present case as

in the preceding case of the Ohio; they are described In

section 2.3 (in coinection with the Ohio rliver model

flcod calculation).



Appendix I

Expansion in the neighborhood of the first characteristic.

It has been mentioned already that, whereas the first

signal of a disturbance initiated at a certain point in a

river with uniform flow travels downstream with the speed

v + 4g, the main part of the flood wave travels more slowly

(cf. Deymi'), depending strongly on the resistance of the

river bed. An investigation of the motion near the head of

the wave, i.e. near the first characteristic with the equation

x = t(vo + C0), shows immediately why the main part of the

disturbance will in general, but not always, fall back behind

the forerunner.

The motion is investigated in this Appendix by means

of an expansion of G. Whitham ane A. Troesch and is carried

out to the two first orders for the model of the Ohio River,

and to the lowest order in the much more complicated case

of the junction problem. The rei-olts obtained enable us to

improve the accuracy of the solution near the firzt

characteristic. It turns out that the finite difference

scheme yields river depths which are tou big (see below),

owing to the fact that our large mesh width smoothed the

river profile out.

Deymie, rh. Propagation d'une intumescence allongea (problemo
aval). Tnt. Cong. for Aprl. •'ech., %th, Iroceedinris,
Sept. 1938, F. Y., ','ilay, 1939.
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"profile computed by
\. inite differences

• /actual profile

wave
front n

",'o o• - -of undisturbed
uniform flow

Diagram 11 x

Error introduced by finite difference scheme

in neighborhood of first characteristic of a

rapidly rising flood wave

In order to expand the solution in the neighborhood of

the wave front, we Introduce new coordinates

= x and t = (v 0 +C 0 )t -x

such that the r-ax Is (i.e. t = 0) coincides with the first

characteristic. The basic system of equations (2.1) are

restated for convenience

2ce 4 11t + VVx " S+ nf =

(A.1)

cvc x+2vcx + 2 c = 0

Upon substitution of the new variables • and Z we find
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2c(c-cT) +v(v -v t)+ (V +c )v -gS+gSf = 0

2v(cE-c•) +c(v. -v )r2(V 0 +c 0 )c r 0

where the friction slope Sffor a rectangular channel of width

B is Fiven by

Sr - vivi 94~/3 1ii{+ 4}/3
f43 Y c .3

We expand v and c as power series in r with coefficlentr2 i..at

are functions of g as follows:

V v + v 1 V1)+ v 2 f)' 2 +

c c + Cl( ) + c 2 (•)2 +..

This expansion is to be used for C 0 only, since for I< 0

we are in the undisturbed region and all functions

V ),., cl(),c(I),... vanish identically. If we

insert the series for v and c into eouations (A.1) and collect

terms of the same order in r, we get ordinary differential

equations for vl(0[), cl(",... for, example

. --. 12c -4(v~1~ + C) =-
1gB

Although the solution of this ditffoerntial equation for c

is easily obtained, the resutlt expressed in general terIis

looks so complicated that we prefer to Ftve it only for the
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case of the Ohio River under the conditions discussed in

section 2: cI = (1.o5 +8.o6 e ) ,1Lý6 1 in rnilcs and hours.

This result has the following physical meaning: The angle a

YO .wave front

7'/ý. undisturbed
water surface

X
Diagram 12

o1' the profiles measured between the wave front and the

undisturbed water surface is shrwn to d- out exponentially
1

a ~-1 , with a and b constants derending on the river
1 + ae

and the boundary condition at x C. Theoretic1lly, a could

also increase exponentially downstream so that a bore would

eventually develop, but only if the inzo in le:vel at 7.

is extremely fast; in our example (so(. 2.1) no bore will

develop unless the water rises at a rate of at least 1 ft.

per minute.

Unfortunately, the evaluation of c2 (r) which yields

the curvature of the profile at the wave front is already

very cumbersome. 7he curvature i!! found to decrease for
-bx

large x like xe , b being a positive constant. With the

two highest order terms in the expansion known, we were sble
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to estimate the region

t hours adjacent to the first

characteristic where the

10,v, .flow is practically

. undisturbed. It is

5 / -, remarkable how far behind
S x= L. 7t the theoretical forerunner

S..th e fir st m ea sura ble

50 100 150 miles si,-nal travels, see

Diagram 13 Diagram 13.

Region of practically Tn a similar way, an

undisturbed flow expansion as a power series

in • has been carribd out

for the Junction of the Chio and Nississipri, as described in

section 3. Here even the lowest order term required a

comnlicated comnutation, since we had to work simultaneously

in three different x,t-planes, with boundary conditions at

the Junction. ;he differential equations or c1 are, in all

three branches, of the same type as for the Ohio, and their

solution for the junction problem ras treated in section 3 are

c=.flo84 e 4,or the Mtssissippi upstream,

60 C.064 e' 229, for the MiSsissippi downstream, I.n rnilcs

and.oirours. This means t h,,t tht nnap.e a dies out exponenttilly

again in the *:iissi5inpi, a little fastcr !ownstream than

upstream, as could be exnected, since the oncoming water in

the upstream branch makes the wave front steeper.
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In the problem of the idealized Ohio River and of the

junction the expansions were carried out numerically in

full detail and were used to avoid computation by finite

differences in a region of practically undisturbed flow.

At the same time the accuracy in the region of small

disturbance was improved in general (as indicated above).

,bis would become more and more Imvportar.t If the f1c,
were to b6 computed beyond 10 hours.
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Appendix TI

Steady flows and. steady roLgressing waves.

II.1 Steady flows. Ile define a steady flow to be one for

which the velocity v and depth y (or, equivalently the

propagation speed c =p ) are independent of the time, that

is, vt = Yt = 0. It follows from the equaticn of continuity

(see eq. (3.1) in Report I),

Yt + vYx + yvx = 0

that for steady flow

(!T.l) (vy)x = 0 whence vy = D 0 a constant)

Similarly, the ecuation of motion (eq. (3.2) of TIanort I)

v t+ v+gyx +g(Sf -S) = 0 yields

(11.2) v~ +gY +g(SCf -S)(i.2 Vx gxI

Since from equation (1I.1) it follows that

D and v Y

equatln (TI 2) eoe

(7T'3) ]Yx + g S

Y YY k +

'le note that ecluaLion ( tt.3) has the simple solution

v = constant, for y aatisfying
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yS

This means that we can find a flow of uniform depth and

velocity having a given discharge 3D (B is width of channel).

Conversely, by fixing the depth y we can find the discharge

from (11.4) of the corresponding uniform flow.

For a channel with varying physical parameters such as

cross-section, friction term, etc. the steady flows proide

the well-known backwater curves. In general, we would find

non-trivial steady solutions y = y(x) and v = v(x) for the

non-uniform channel. The explicit aetermination of the stage

and discharge would be possible by numerical integration of

ordinary differential equations.

The analysis of the steady flow through Lhe junction of

the Ohio and Mississippi Pivers was made for the conditions

Oescribed in section 3. That is, at 50 miles upstream in the

Ohio the stage was held at 4O ft, while far unstrcrin in the

?Iississippi the stage was kept at 20 feet. The latter

condition imrlies that the slope yx should vanish uptreain

in the Mississippi, or that y and D = vy satisfy equation

(TI.h). As before, let us use subrcripts !L], [2J, and (31

to represent quantities evaluated in the Ohio, upstream

Mississippi and downstream Mississippi respectively. The

conditions that must be satisfied at the Junction ian be

simply written

(TT.5) Yrrj = Y2] =Y 31  (y an un'.known)

(T1.6) rI + D = ,Of31 for x = 0
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Equation (I1.3) can now be incer-rated In each of the three

river branches (from the Junction point as origin).

(I1.7) S -E dy = x

with 
Yj

= y 2Y73 
- S1

B

We observe that yj as well as D[1 and D[3 must be deter'rined

in order that (11.7) can be used. (D[2] as observed above is

known from the upstream condition in the Mississippi.)

The flow in the downstream Mississippi is easily seen

to be uniform (i.e. depth y = yj and velocity are constant)

and this means that equation (11.4) (with the use of (11.6))

holds in the form (if 3 = 100C ft.)

We schematically plot th,. D D/y 3

integrand, I(y), of equation Y)
(11.7) (for given D and
other constants) in the
region of sub-critical flow,
that is, where gy is greater

2than v2. '1e see from
Diagram 14 that

y

X uf T(y)dyJ 'I
yJ

will become positive infinite 1la4m 14
only It y = yj value for

which E a 0. (Po other combination of finite values of y
and yj can produce a positive infinite velue for x.)
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(11.8) -- 1 3 [yJ ly

Equation (11.8) togeiher with equation (11.7) rewritten

for the 50 mile segment of the Ohio aa

Y[J] g D(1

(11.9) 50 = . E dy with = mi

YJ

are a pair of simultaneous equations from wAich the values

of 7,J and D[I can be determined by an iterative procedure.

The results are for x = O,

Y[V = Y =2] Y[31  YJ 31.2 ft.

Vl]= 4.83 mph, v 1 2 1 = 2.38 mph, v[31 = 3.18 mph

The ciýrve- of stage versus distance were computed from

formula (11.7) and are drawn below.

( feet

-, ow streamni4s~sip
Upstream Mississippi ..--.-...

S120

ix

-5000 :051es

Diagram 15

Steady flow profile in neighborhood of
junction of the Ohio and Miscissippi Rivers
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Ve have noted earlier that the transient solution of

our junction problem tends to the above drawn steady flow

as time increases.

11.2 Steady-progressiný waves. For the case of the uniform

channel it is possible to find solutions in the form of steady-

progressing waves, that is

y(xt) = y(x -Ut) , v(x,t) = v(x -Ut)

with U a constant speed of propagation.

In order to find a convenient representation of such

phenomena, we introduce a new coordinate system (z,t) by

setting

z x-Ut, t=t

We note that z = constant ccrresponds to a motion with velocity

U in the (x,t) plane. The differential equations become

(11.1Yt + (v -U)yz + yvz = 0

(.11) t + (v -U)vz + gYz + g(Sf -S) = 0

The requirement that y and v be functions of z only,

means that Yt = vt = 0 and as in the case of steady flow we

find that

(" -U)y = D (D a constant) and

(T1.12)

(g-yD2)y + g(Sf-S) = 0
y
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Equation (11.12) can be integrated to yield

(TI-13) z - = -E dy I J(y)dy

The integrand I(y) for sub-critical flow3 will be typified

in the following sketch.

AI(y)
'I I !

I / !"

Yo Y.l

I ",

Diagram 16

We observe that there are two vertical asymototes y = ojyI

between which 1(y) is negative. This means that for the

infinitely long river we can obtain a non-uniform steady-

progressing wave by letting yl correspond to the depth at

x = -co and yo to the depth at x = +co. If D and U are

prescribed, y0 and yl are uniquely determined and vice versa

if yo and yl are prescribed then U and D are uniquely

determined. The latter viewpoint is easier to adopt, that

is, we find by setting E 0 for y = yo and y y.

-. - T
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( U y o + 7 ) 2 = F y o2 ( .. .. / 3

B
(TI.14)

(Uyl + D) 2= O)YY2 /

Equations (TT.14) can easily be made linear to determine U

and D simply. In the case we treated numerically yl = 40 ft,

YO = 20 ft, we found that U = 5 mph.

Unfortunately, the steady-progressing waves do not exist

in rivers, since the channels aren't uniform. Nevertheless,

the speed of propagation, U, is very close to the observed

speed of travel of flood waves. For this reason, some

theoretical investigations are being made to establish the

relationship between prooagation speeds of transient phenomena

and U. These results are needed to specify the accuracy of

long range forecasts of flood conditions.

.`. -


